Evan J. Smith
Mustang360 Network Content Director
March 23, 2010
Contributers: Marc Christ Photos By: Courtesy of Ford Motor Company

For dyed-in-the-wool late-model Mustang enthusiasts, or even Mustang newbies, Ford's new 412hp, four-cam 5.0L is a dream come true.

Simply stated, the "5.0" engine encompasses great meaning to many Mustang fans, both old and young. When the Fox-body Mustang hit the streets in 1979, the V-8 powerplant featured 8.4:1 compressio and a two-barrel carburetor, and produced a wild 140 hp. By 1987 the 5.0 H.O. was fuel injected and making 225 hp. It was a player in the performance war, going head-to-head with GM and Chrysler's best.

Real performance was on the comeback and the 5.0L Mustang offered the best bang for the buck. It was cheaper than either F-body, the Corvette, or the powerful GN, and in the right hands could do amazing things. Early 5.0 pioneers like Steve Collison, Tony DeFeo, Neil van Oppre, Lee Rutter, Nitrous Pete Misinsky, Brian Wolfe, and Stormin' Norman (to name a few) pushed 5.0L Mustangs past what anyone thought was possible. They ran 12s, 11s, and then 10s with basic bolt-ons and tuning-and they did so at the time when 11s and 10s were reserved for racecars or big-block muscle.

Frankly, 5.0L Stangs exceeded the performance limits of what production cars were "supposed" to do. An amazing feat considering many thought the funky EFI setup meant the end of hot rodding altogether.

Magazines like Cars Illustrated and then MM&FF dedicated page after page to 5.0L performance, focusing on new technology, fresh parts, and real-world dragstrip testing. We reported feverishly on those LX and GT models that proved to be fast, reliable, (save for the T-5) and ultimately, limitless in performance.

Sadly, the 5.0 era came to an end in 1996 when Ford switched to the modular Two-Valve 4.6L engine. Due to lacking performance, some appeal slipped away, but thankfully Ford eventually turned the 4.6L into a winner, making over 300 hp. The last variant will go to bed in 315hp form in the 2010 GT.

Nevertheless, Mustang enthusiasts crave more, and for 2011 Ford will deliver the goods with an all-new 5.0L V-8. More than just a beefed 4.6L modular, the "new" 412hp 5.0 features a fresh design with a slew of technological advancements that will produce an efficient 82 hp per liter and at least 25 mpg-and it makes as much torque as a Terminator! Important features include 11.0:1 compression, variable cams that help produce a broad torque curve, a new composite intake, 80mm throttle body, and tubular headers.

In the spring of 2007, Bob Fascetti, director of Large Gas and Diesel Engine Technology, chose Mike Harrison, a chief engineer, to be in charge of the new 5.0L engine for the Mustang. After some initial research, Harrison reported back to Fascetti that his team could build an engine to produce 370-380 hp. Fascetti told Harrison to make it 400 hp and the normal time to undergo such a project was going to be cut by a whole year. So Harrison assembled a team of engineers, who are also enthusiasts, for the race against the clock. With the two main characteristics of the engine already decided, 5.0L and 400 hp, the goal was to build an exciting, affordable, and fuel-efficient engine around those parameters.

Though all of the components of any engine are parallel and work in harmony, the cylinder heads were the first major design project. Todd Brewer and John Reigger lead the way. The team agreed that the heads had to be a Four-Valve, DOHC design.

Once a prototype of the new compact Four-Valve head was built, the team tried the new cylinder heads on surrogate engines using existing FRPP camshafts to test for power output and torque curves. The end result is said to outflow GT500 heads by 4 percent. After studying what camshaft profile worked best for the new head design, a set of prototype cams was computer-designed by Kevin Shinners and John Carter, and cut for testing. "For the first time ever, we only ground one set of cams," said Adam Christian, ICE engineer (Intake, Combustion, and Exhaust). It usually takes dozens of prototype cams to find the right combination.